

IMDRF / DITTA joint workshop

Artificial Intelligence in Healthcare

Opportunities and Challenges

Monday 16 Sept. 2019, Yekaterinburg

How Industry can cope with challenges?

Philippe Lartigue

RA Senior Director, Global Policy, GE Healthcare - DITTA member

TABLE OF CONTENTS

- AI implementation: "locked" algorithm vs "adaptative" algorithm
- Access to Data
- Regulatory and Technical Matters
- Legal Matters: Liability, Data Protection, Intellectual Property
- Ethical Framework

TYPES OF AI IMPLEMENTATION

• "locked" algorithm:

SW that has been trained before placing on the market

"adaptive" algorithm:

SW that is continuously adapting and optimizing device performance after placing on the market

DATA REQUIREMENTS

Volume/Quantity

Essential, but not sufficient

- Greater volume increases performance
- However, volume must be "balanced", meaning equal positives & negatives
- Better annotation approaches can increase AI performance with volume staying constant (See "Veracity")

Method	Training Data	Test Accuracy	Test AUC
1	286+, 286-	0.725	0.803
2	600+, 9000-	0.755	0.844
3	750+, 750-	0.785	0.879
4	1283+, 1283 -	0.863	0.92

Variety

Prevents biased & brittle AI

- AI models only work on the type of population they were originally trained on
- If only one data source is used... the result is "brittle", meaning it will perform well at location A where it was trained, but poorly at B
- · Lack of diversity will introduce bias

Global Examples

Darker

Contrast

Hand in FoV

Poor Positioning

Veracity

Clinical relevance ... & top performance ... Prevents "garbage in, garbage out"

- Essentially, even a high volume of data from all over the world will fall short if the appropriate "ground truth" isn't added
- Can allow for higher performance, with less data fed into the AI model

	Method	Time to Annotate	Test Acc	Test AUC
Weak	Image Level Label	Fast	0.808	0.924
	Pixel Level ROIs	Slow	0.890	0.968
Strong	Image Level Label + Pixel	Slowest	0.929	0.981

CLASSIFICATION DET

DETECTION

SEGMENTATION

CAT

CAT

CAT, DOG, DUCK

ACCESS TO DATA

- Access to data should be publicly available
- Access to data should be offered at no-cost or if not possible, at a minimum reasonable cost
- Data should be made available in a non-discriminatory way, with market players having equal opportunities to access data

REGULATORY MATTERS

- « Locked algorithm »:
 - Only a specific case of Software As a Medical Device (SaMD)
 - Performances and safety characteristics are validated and frozen before placing on the market
 - Classification model of Medical Device Regulations applies
 - SaMD: Quality System, Essential Principles, Risk categorization and Clinical Evaluation apply
 - Standardisation work ongoing (eg.Good Machine Learning Practices)

REGULATORY MATTERS

- « Adaptive algorithm »: differs from other SaMD
 - Changes in performances and safety characteristics during use
 - How to determine and manage change? Significant/non-significant change?
 - How would change to AI system affect regulatory obligations: labelling, registration, ...
 - Requires practical guidance for manufacturers under EU Medical Devices regulatory framework:
 - Application of MDR General Safety and Performance Requirements
 - Conducting clinical evaluation and clinical investigations
 - Change control
 - FDA proposed a regulatory framework for modifications to AI/ML software:
 - Types of SW modifications
 - Total product lifecycle regulatory approach

LEGAL MATTERS

- Liability: Decision support vs Autonomous systems
 - Liability shared between manufacturer and medical professional
 - Various scenarios
- Data Protection and Privacy Laws: GDPR
 - Design constraints in terms of data access, transparency, interoperability
- Intellectual Property
 - Manufacturer owns IP on AI systems but not on data used to train the system
 - IP sharing to be addressed in advance by manufacturer in relation with clinical advisers

ETHICAL

- AI4People: multi-stakeholder forum
- Ethical Framework builds upon 5 main principles:
 - Beneficence ("do good")
 - Non-maleficence ("do no harm")
 - Autonomy ("preserve human agency")
 - Justice ("be fair")
 - Explicability ("operate transparently")

ETHICAL

- EU Ethics guidelines for trustworthy AI AI systems should meet 7 key requirements:
 - 1. Human agency and oversight
 - 2. Technical robustness and safety
 - 3. Privacy and data governance
 - 4. Transparency
 - 5. Diversity, non-discrimination and fairness
 - 6. Societal and environmental well-being
 - 7. Accountability

Thank you! Спасибо!

www.globalditta.org

